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A self-consistent mean-field method is used to study critical wetting transitions under nonequilibrium con-
ditions by analyzing Kardar-Parisi-Zhang �KPZ� interfaces in the presence of a bounding substrate. In the case
of positive KPZ nonlinearity a single �Gaussian� regime is found. On the contrary, interfaces corresponding to
negative nonlinearities lead to three different regimes of critical behavior for the surface order parameter: �i� a
trivial Gaussian regime, �ii� a weak-fluctuation regime with a trivially located critical point and nontrivial
exponents, and �iii� a highly nontrivial strong-fluctuation regime, for which we provide a full solution by
finding the zeros of parabolic-cylinder functions. These analytical results are also verified by solving numeri-
cally the self-consistent equation in each case. Analogies with and differences from equilibrium critical wetting
as well as nonequilibrium complete wetting are also discussed.
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I. INTRODUCTION

Wetting transitions can be considered as an interface un-
binding transition where the mean interfacial separation from
a substrate plays the role of an order parameter. In the wet
state the interface drifts away from the substrate, while in the
nonwet state the interface is bound to it, with many contact
points between them. In equilibrium, such phenomena can be
described by Langevin-type equations of the form �1�

�h�x,t�
�t

= D�2h −
�V�h�

�h
+ ��x,t� �1�

with V�h� standing for the energy between the substrate and
the interface, � being a Gaussian white noise, and D a dif-
fusion coefficient. Alternatively, the number of contact points
between the substrate and the interface can also be regarded
as an order parameter that equals zero when �h�=� and is
nonzero otherwise. This quantity is closely related to the
surface order parameters studied in the framework of lattice
systems in a semi-infinite geometry, for which the interfacial
displacement models like Eq. �1� are expected to be useful
effective descriptions �2�. A familiar example is provided by
Ising ferromagnets where the surface order parameter is the
average magnetization at the substrate. The variable �n�
= �e−h� constitutes an adequate mathematical representation
of such an order parameter that exhibits singular behavior: it
is a positive quantity that vanishes as �n���a−ac�� close to
criticality, with a denoting a convenient control parameter,
and evolves in time as �n�� t−� right at the transition.

An extension to nonequilibrium situations was considered
by adding the nonlinear term ���h�2 to Eq. �1�, which rep-
resents preferential growth along the local normal to the sur-
face and covers the realm of Kardar-Parisi-Zhang �KPZ� in-
terfacial phenomena �3,4�. This is expected to capture the
physics of wetting transitions under nonequilibrium circum-
stances in the simplest possible form. Interestingly, in this
case a simple Langevin equation for n does exist if short-

ranged forces between the substrate and the interface are
assumed. One typically writes �1�,

V�h� =	 dx�ah�x� + be−ph�x�� �2�

where a and b are phenomenological parameters. The change
of variables h=sgn���ln n leads to an equation of the form
�see �5� for details�

�n�x,t�
�t

= D�2n + an + bn1+p + n��x,t� , �3�

to be interpreted in the Stratonovich sense. Here, b is a
temperature-dependent parameter, a plays the role of a
chemical potential difference and is the control parameter,
and ���x , t��=0, ���x , t���x� , t���=	2��x−x����t− t��. p car-
ries the opposite sign to � which is ultimately responsible for
the physical behavior. For p
0, the above equation repre-
sents the so-called multiplicative noise 1 �MN1� universality
class �4,5�. For p�0, n is merely an auxiliary variable that
diverges at the transition and it is 1 /n which has to be stud-
ied instead. In this case the associated set of exponents define
the multiplicative noise 2 �MN2� universality class �6–8�. A
detailed discussion of the differences between the MN1 and
MN2 universality classes can be found in �5�. In the follow-
ing discussion the surface order parameter will be denoted
nOP. It should be emphasized that nOP=n for MN1 and nOP
=1/n for MN2. Despite the simple appearance of Eq. �3�, we
nonetheless caution that the intricacies and subtleties of the
KPZ equation lie in the interplay between the diffusion and
the multiplicative Gaussian white noise terms.

The MN1 and MN2 universality classes are examples of
nonequilibrium, complete wetting transitions, in which a has
to be fine tuned. A second type of wetting transition may
occur if as the temperature is increased b becomes bigger
and eventually changes its sign while the system is kept at
coexistence, a=ac. This is denoted critical wetting and
amounts to taking b�0 and adding a higher-order term
cn1+2p in order to obtain a finite solution for n. Equivalently,
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the potential to be considered in the interfacial representation
is V�h�=ah+be−ph+ce−2ph, where the last term ensures sta-
bility. More precisely, the model system is defined by the
Langevin equation

�n�x,t�
�t

= D�2n + an + bn1+p + cn1+2p + n��x,t� , �4�

in which now b is the new control parameter and a is set to
the critical value ac found for the complete wetting transi-
tion. For sufficiently low values of b�0 the interface re-
mains pinned and the density of locally pinned sites at the
wall is high. As the transition is approached �increasing b�,
the stationary density of pinned segments goes to zero in a
continuous manner as �nOP�b , t=�����b−bc��. Above bc, the
interface depins and therefore the mean separation �h� di-
verges and �nOP� vanishes. In this latter case the density of
pinned segments scales with time as �nOP�b
bc , t��� t−�,
with the exponent � adopting different values for MN1 �p

0� and MN2 �p�0�.

In this paper we study within the mean-field approxima-
tion the critical wetting transition associated with Eq. �4�. In
the absence of exact solutions, mean-field approaches are
useful not only in enabling analytic calculations to be per-
formed, but also because they provide insight into the physi-
cal behavior at high system dimensionalities which would be
otherwise unattainable from computer simulations alone.
Since, in the present case, it is known that mean-field theory
could be valid for dimensions as low as d=2 �d=3 bulk
dimensions� at least in some regime, the results presented
here may be relevant for realistic three-dimensional systems
�5�.

This paper is organized as follows. In Sec. II we describe
the mean-field approach and provide details of the calcula-
tion for both the MN1 and MN2 cases. As will be proved,
three different scaling regimes have to be distinguished for
MN1, and only one for MN2. Results for higher moments of
�nOP� and for �h� are also included. Section III contains a
summary and a discussion of our findings.

II. MEAN-FIELD APPROACH

Sound mean-field approximations to multiplicative-noise
equations like �4� require that the effects of both the noise
and the spatially varying order parameter are taken into ac-
count to some extent. To this effect, the following procedure
can be used �9�: the Laplacian is discretized as �1/2d�
 j�nj

−ni�, where ni=n�xi , t� and the sum is over the nearest neigh-
bors of i. Afterward, the value of the nearest neighbor is
substituted by the average field �n� to obtain a closed Fokker-
Planck equation for P�n , t , �n��. The steady-state solution is
then found from the self-consistency requirement �10�

�n� =

	
0

�

nP�n,�n��

	
0

�

P�n,�n��
. �5�

In what follows we particularize Eq. �5� to the MN1 and
MN2 cases �see Eq. �4��. It will be shown that for MN1 there

is a sequence of scaling regimes depending on the relative
importance of the noise strength as compared to the spatial
coupling D and the nonlinearity exponent p: �i� a pure mean-
field regime where the noise can be completely disregarded,
�ii� a weak-noise regime where the noise strength enters the
expression of the exponents, but without shifting the wetting
temperature, and �iii� a strong-noise regime where both the
wetting temperature and the exponents are noise dependent.
For MN2 the situation is far less rich, exhibiting a single
mean-field-like scaling regime.

In the following analysis the mean-value theorem for in-
finite integrals �11� will be used repeatedly to determine the
asymptotic behavior in �n� of the various integrals. Accord-
ing to this theorem, under quite general integrability and
boundedness conditions,

	
a

�

dx f�x�g�x� = �	
a

�

dx g�x� , �6�

where � is some value between the lower and upper bounds
of f�x� �11�. Likewise, the combination 2D /	2 will be de-
noted by  to simplify the notation.

A. The case MN1

For the MN1 case �p
0�, the associated stationary prob-
ability density can be readily obtained from the associated
Fokker-Planck equation �12� and reads

Pst�n� � n�−1 exp�−
2

	2�b

p
np +

c

2p
n2p +

Dm

n
� , �7�

where m= �n�, and �=−2�a+D� /	2. After defining

I�m� = 	
0

�

dn n� exp�−
2b

	2p
np −

c

	2p
n2p −

2D

	2

m

n
� , �8�

and substituting n=mx, I�m�= �m�1+�J�m�, with

J = 	
0

�

dx x�e−b��mx�p−c��mx�2p
e−1/x, b� =

2b

	2p
p,

c� =
c

	2p
2p. �9�

The self-consistency equation �5� can now be recast in the
simpler form

−


m
=

1 + �

m
+

�mJ�m�
J�m�

. �10�

Since the mean-field, self-consistent calculation for com-
plete wetting �MN1� �10� yields ac=	2 /2 ��c+1=� and J

0 does not diverge, the condition �10� simplifies to �mJ
=0.

We now consider an intermediate point x1
0 such that
mx1�1 and split J�m� as

DE LOS SANTOS et al. PHYSICAL REVIEW E 75, 031105 �2007�

031105-2



J = J1 + J2

= 	
0

x1

dx x−1−e−b��mx�p−c��mx�2p
e−1/x

+ 	
x1

�

dx x−1−e−b��mx�p−c��mx�2p
e−1/x, �11�

after which exp�−b��mx�p−c��mx�2p� in J1 is expanded to
second order, whereupon

J1 � c1 − b�c2mp − c3m2p + O�m3p� , �12�

where c1, c2, and c3 are constants. As for J2, since the de-
rivative can enter the integral,

dJ2

dm
= 	

x1

�

dx x−1−e−b��mx�p−c��mx�2p
e−1/x

��− pb�mp−1xp − 2pc�m2p−1x2p�

= e−1/��m�	
x1

�

dx x−1−e−b��mx�p−c��mx�2p

��− pb�mp−1xp − 2pc�m2p−1x2p� , �13�

with ��m�� �x1 ,�� being a by-product of the application of
the mean-value theorem. Taking �mx�p= t,

dJ2

dm
= −

e−1/��m�

m1− 	
�mx1�p

�

dt t−/p−1e−b�t−c�t2�b�t + 2c�t2� =
c4�m�
m1− .

�14�

Finally,

dJ

dm
= pb�c2mp−1 + 2pc3m2p−1 + c4�m�m−1 = 0. �15�

To proceed further requires identifying the term involving
the lowest power of m, which in turn requires studying how
c4�m� modifies m−1 for small values of m.

First, notice that the factor exp�−1/�� is innocuous in
such a limit. Second, we work out the low-m limit of the two
integrals contained in c4�m�, namely,

c = 	
�mx1�p

�

dt t−/pe−b�t−c�t2, c+1 = 	
�mx1�p

�

dt t−/p+1e−b�t−c�t2,

�16�

to find after splitting

	
�mx1�p

�

dt t�e−b�t−c�t2 = 	
�mx1�p

1

dt t�e−b�t−c�t2

+ 	
1

�

dt t�e−b�t−c�t2. �17�

After applying the mean-value theorem to the first integral a
contribution mp�1+�� is obtained �the second integral contrib-
utes a constant�, whence it ensues that the leading asymptotic
behavior of Eq. �15� is unaffected by c4�m� and hence two
cases must be distinguished.

Case 1. p� leads to an equation of the form �c̄2, c̄3, and
c̄4 being positive factors�

bc̄2 + mpc̄3 + m−pc̄4 = 0, �18�

which implies m��−b�� as b→0, with

� = �
1

p
if p �

D

	2 ,

1

 − p
if

D

	2 � p �
2D

	2 .� �19�

Case 2. p
. It is expedient to rewrite Eq. �14� as

dJ2

dm
= −

e−1/��m�

m1− 	
�mx1�p

�

dt t�1+��/p−1e−b�t−c�t2�b�t + 2c�t2�

=
− e−1/�

m1− � �	
0

�

dt t−/p−1e−b�t−c�t2�b�t + 2c�t2�

− 	
0

�mx1�p

dt t−/p−1e−b�t−c�t2�b�t + 2c�t2�� . �20�

The first integral, which we call c5�b�, does not depend on m
but can vanish for particular values of b, while the for the
second one we again apply the mean-value theorem to obtain
the leading �lowest� powers mp−, m2p− when m�0. Last,

bc̃2mp− + c̃3m2p− + c5�b� = 0. �21�

Note that the factors c̃2 and c̃3 are given in terms of expo-
nentials of �1� �x1 ,��, �2� �0, �mx1�p� which result from the
application of the mean-value theorem, and do not vanish as
m→0. The next step is to find out what values of b make
c5�b� vanish. The latter consists of two integrals that can be
easily written in terms of parabolic-cylinder functions D��x�,
using the recurrence relation D��x�=xD�−1�x�+ �1
−��D�−2�x� �11�:

c5�b� = �2c��/2p��1 −


p
eb2/2c	2pD/p�b� 2

c	2p
 .

�22�

Therefore, the critical point is determined by the zeros of the
parabolic-cylinder functions. It turns out that D/p has exactly
one zero of order 1 on the interval at hand �13�, 0� / p
�1, and that this zero is negative, so we thus conclude that
in this regime the transition occurs at the finite value
bc=�	2pc /2xc, with xc�0 the only zero of D/p�x�, and
is controlled by an exponent �=1/ �p−�, where now �n�
��−b+bc��.

We next summarize the scaling regimes obtained for the
three cases:
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� =�
1

p
�bc = 0� if p �

D

	2 ,

1

2D

	2 − p

�bc = 0�
if

D

	2 � p �
2D

	2 ,

1

p −
2D

	2

�bc � 0�
if p 


2D

	2 .
� �23�

In order to check these results we have solved numeri-
cally the self-consistent equation �5�. This requires evaluat-
ing numerically the involved integrals. Figure 1 illustrates
the output of this calculation by showing estimates of � as a
function of p and 2D /	2. Note the excellent agreement with
the analytical results Eq. �23�. In the region around
	2p /2D�1, there are divergences and the integrals are dif-
ficult to evaluate numerically, generating large error bars. For
ratios 	2p /2D larger than 1 the location of the critical point
obtained by solving �5� numerically is found to coincide with
that given by the zeros of the corresponding parabolic-
cylinder function, which we have also computed numeri-
cally. These results provide a complete verification of the
previous analytical calculations.

Let us now consider higher-order moments. We can write
for k�0

mk � �nk� =
Ik�m�
I0�m�

�24�

with

Ik�m� � 	
0

�

dn n�+k−1 exp�−
2b

	2p
np −

c

	2p
n2p −

m

n
�

= �m�k+�J�k� �25�

where

J�k��m� = 	
0

�

dx x�+k−1e−b��mx�p−c��mx�2p
e−1/x. �26�

Splitting the integral into two parts as above, J�k�=J1
�k�+J2

�k�,

J�k� = J1
�k� + J2

�k� = 	
0

x1

dx x�+k−1e−b��mx�p−c��mx�2p
e−1/x

+ 	
x1

�

dx x�+k−1e−b��mx�p−c��mx�2p
e−1/x. �27�

Proceeding similarly as in the above cases for J1 and J2, the
lowest powers in m can be identified as

J1
�k� � c1

�k� − b�c2
�k�mp − c3

�k�m2p + ¯ �28�

and using �17�

J2
�k� � ĉ1

�k� − b�ĉ2
�k�m−�−k + ¯ . �29�

Consequently,

mk ��mk if k �
2D

	2 + 1,

m+1 if k 

2D

	2 + 1.� �30�

This represents a strong form of multiscaling, very similar
to the one reported for the moments in the self-consistent
solution for MN1 �14�.

Also, �h�= �−ln n� can be computed effortlessly by mak-
ing use of

ln n = lim
�→0

n� − 1

�
, �31�

which reduces the calculation of the average of ln n
to a combination of moments of n. Use of this gives �h�
�−ln�−b+bc�.

Finally, we just mention that the more general situation
bn1+p+cn1+q with q
 p leads to the following simple substi-
tutions:

� =�
1

q − p
if p � q �

2D

	2 ,

1

2D

	2 − p
if p �

2D

	2 � q ,

1

p −
2D

	2

if p 

2D

	2 .
� �32�

To locate the critical point one has now to proceed numeri-
cally to search for the zeros of c5�b� which can no longer be
expressed in terms of parabolic-cylinder functions.

B. The case MN2

Consider again Eq. �4� where for convenience we have
introduced a change in the sign of p, which is now positive,

FIG. 1. �Color online� Estimates of �2D /	2�� as a function of
	2p /2D from power-law fits of �nOP� vs b−bc after a numerical
integration of Eq. �5� for MN1. Three regimes are found: the solid
�blue� line corresponds to p�D /	2, the dashed �red� one to
D /	2� p�2D /	2, and the dash-dotted �green� one to p
2D /	2.
For ratios 2D /	2� p, bc is obtained from the �numerically com-
puted� zeros of the corresponding parabolic-cylinder function.
Close to the singularity p=D /	2 the integration is cumbersome and
the resulting errors large. Far from it, error bars are smaller than the
symbols in some cases.
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�n�x,t�
�t

= D�2n + an + bn1−p + cn1−2p + n��x,t� . �33�

This is a non-order-parameter Langevin equation whose as-
sociated universality class can be studied by measuring the
order parameter �n−1�. The corresponding stationary prob-
ability density is

Pst�n� � n−1+2�a−D�/	2
exp�−

2

	2�b

p
n−p +

c

2p
n−2p +

Dm

n
� ,

�34�

with m= �n�→� at the transition. Proceeding as in the MN1
case, we define

I�m� = 	
0

�

dn n−1+2�a−D�/	2
exp�−

2b

	2p
n−p −

c

	2p
n−2p

−
2D

	2

m

n
 , �35�

and the self-consistent equation is now given by

−


m
=

�mI�m�
I�m�

. �36�

This last expression can be further simplified by making the
change of variable x=m /n and setting as before ac=	2 /2 �8�
to obtain

�mJ�m�
J�m�

= 0, �37�

where

I�m� = m−J�m�, J�m� = 	
0

�

dx x−1e−b��x/m�p−c��x/m�2p
e−/x,

�38�

and , b�, and c� are defined as above. Next, an intermediate
point x1 is considered such that x1 /m�1 and J�m� is split as
in Eq. �11�, J�m�=J1+J2. The exponential factor exp�
−b��x /m�p−c��x /m�2p� in J1�m� is expanded, what leads to
the following asymptotic behavior:

J1�m� �
m��

c1 − b�c2mp − c3m2p. �39�

Regarding J2, by virtue of the mean-value theorem

dJ2�m�
dm

= − b�pm−p−1f1��� − c�2pm−2p−1f2��� , �40�

where f i��� stands for the function cie
−b���i�m� / m�p−c���i�m� / m�2p

with �i�m�� �x1 ,�� and ci=�x1

� dx xaie−x. Note that ai does
not depend on m. Lastly, after substituting the self-consistent
equation reads

d

dm
�c1 − b�c2m−p + J2�m�� = 0, �41�

from which it is straightforward to extract the critical point
bc=0 and write

m � �− b�−1/p. �42�

This result has been verified by numerical integration of
the self-consistent equation.

A calculation of the higher moments of the distribu-
tion �34� along the same lines as the previous section �but
with m→�� results in mk��nk��mk, and therefore �nOP�
��−b�1/p while, as in MN1, �h�� ln�m��−ln�−b�. Results
pertaining to �nOP� are numerically verified in Fig. 2.

III. DISCUSSION AND SUMMARY

We have investigated within the mean-field approxima-
tion the surface order parameter n=e−h at nonequilibrium,
critical wetting transitions of KPZ interfaces interacting with
a wall. The model, as described by the Langevin equation
�4�, covers both positive �MN2 p�0� and negative �MN1
p
0� KPZ nonlinearities.

The more interesting case is that of negative KPZ nonlin-
earities, where three different scaling regimes can be distin-
guished.

�1� If p�D /	2 a critical wetting transition exists charac-
terized by the exponent �=1/ p and the critical temperature
bc=0. We denote this the pure mean-field regime because
these are the values that would have obtained had the noise
and the Laplacian terms been neglected in the equation, i.e.,
in the crudest possible mean-field limit �4�.

�2� If D /	2� p�2D /	2 the critical wetting temperature
is still given by bc=0 but the critical exponent no longer
depends solely on the potential details but also on the noise
strength, �=1/ �2D /	2− p�. This is denoted the weak- noise
regime.

�3� If p
2D /	2 the system enters a strong- noise regime
where the critical temperature is shifted away from zero, bc

=xc
�	2pc /2 with xc�0 the only zero of the parabolic-

cylinder function D2D/	2p�x�, and �=1/ �p−2D /	2�.
This rich structure is expected to hold at least qualita-

tively beyond mean-field theory as it is known that Eq. �3�
exhibits a strong-coupling regime for arbitrary high system
dimensionalities. A similar scenario arises in the full solution
of equilibrium critical wetting with long-ranged forces for
which there are also three regimes for the behavior of �h�,
whose nature is similar to ours insofar as their origin can be

FIG. 2. �Color online� Estimates of � as a function of p from
power-law fits of �nOP� vs b−bc after a numerical integration of Eq.
�5� for MN2. The error bars are smaller than the symbols.
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traced back to the relevance of fluctuations as compared with
the potential terms �1�. As in the present case, in equilibrium
a first regime exists which is correctly described by naive
mean-field theory. In the second one the critical temperature
is given correctly by mean-field theory, but the critical expo-
nents are not, and in the third one fluctuations dominate and
mean-field theory has nothing to say.

An important difference exists, however, between our
nonequilibrium self-consistent solution for negative KPZ
nonlinearities and equilibrium wetting in that the predictions
for the former are for d=�, while the three-regime behavior
for the latter occurs only below the upper critical dimension
dc=2. In higher dimensions equilibrium wetting is known to
be controlled by a Gaussian fixed point with trivial associ-
ated scaling �1�.

Higher-order moments also display interesting behavior.
All moments mk starting from 2D /	2+1 scale with the same
exponent, while the usual scaling mk�mk obtains for k
�2D /	2+1. This same behavior was observed in a mean-
field study of nonequilibrium, MN1 complete wetting as re-
ported in �14�, and seems to be a common feature of
multiplicative-noise controlled transitions.

Additionally, it was found that the mean separation at the
transition diverges as �h��−ln�−b+bc�, with bc=0 for p
�2D /	2 and bc�0 for p
2D /	2. This implies that there is
a single scaling regime in terms of h rather than three. That
the behavior of the surface order parameter is richer than that

of the mean separation is seemingly a common characteristic
of these systems.

For positive KPZ nonlinearities has also been investigated
and the results show a single regime �n−1���−b�1/p, with
higher moments scaling as mk�mk. The mean interfacial
separation grows logarithmically, �h�� ln m�−ln�−b�.

Hence, positive KPZ nonlinearities generate a trivial
mean-field �or high-dimensional� behavior for nonequilib-
rium critical wetting, compatible with standard Gaussian
scaling, which is analogous to the mean-field behavior of
equilibrium critical wetting. On the contrary, negative KPZ
nonlinearities behave in a rather intricate way, with highly
nontrivial scaling including three different regimes even in
mean-field �or high dimensions� approximation.

In future work we will study how the rich phenomenology
reported in this paper is affected by fluctuations, i.e., going
beyond the mean-field approximation. It would also be nice
to have nonequilibrium critical wetting experiments to see
whether our predictions can be observed in real systems.
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